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Abstract

Natural convection flows are studied numerically for porous media and homogeneous fluids inside a rectangular cavity with inclina-
tion. These thermal fluid flows are considered under the respective two-dimensional unsteady Boussinesq approximation in stream func-
tion and vorticity variables. The study depends on the Rayleigh number, angle of inclination, and the aspect ratio of the cavity. At the
validation stage our results are in good agreement with those reported by other authors. Results suppose to be new are presented either
for angles of inclination not reported before or for high Rayleigh numbers with large aspect ratios. In rectangular porous cavities with
Rayleigh number P102 multiple cells appear for some angles. In homogeneous fluids, for Rayleigh numbers of the order of 105–106 in
large enough vertical cavities at most secondary cells appear for some angles and the flow becomes more complex and looks like to be
oscillatory.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The mass and momentum equations in natural convec-
tion fluid flow are given by the Darcy equations in porous
media and by the Navier–Stokes equations in homoge-
neous fluids, and both are coupled with the thermal energy
equation through the unsteady Boussinesq approximation
to deal with an incompressible structure in both situations.
Besides, in this work the dimensionless problems are for-
mulated in terms of the stream function and vorticity vari-
ables; then, the computation of the pressure is avoided and
the incompressibility condition is satisfied automatically.

Our numerical study on natural convection flows is car-
ried out on tilted rectangular cavities (tall, wide or square).
Once a convenient second order time discretization is per-
formed, non-linear elliptic systems are obtained; they are
solved through a fixed point iterative process with a com-
mon structure for both problems. The iterative process
leads to the solution of uncoupled, well-conditioned, sym-
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metric linear elliptic problems for which very efficient solv-
ers exist regardless of the space discretization.

The study on natural convection flows in porous media
and homogeneous fluids has important technological appli-
cations. To name a few: storage and preservation of grains
and cereals, solar energy collectors, filter systems, and
transport of radioactive wastes through the soil, in the first
case; energy storage systems, security on nuclear reactors,
thermal insulation for buildings, cooling of electronic
devices, and geophysical applications, in the second case.
On the parameters, Rayleigh number, angle of inclination
/ and aspect ratio A (A = ratio of the height to the width)
of the cavity that characterize the evolution of the flow, by
its definition, we must distinguish between the Rayleigh
number of a fluid in a porous medium Rap and the one
of a homogeneous fluid Rah.

Some works are mentioned next in connection with nat-
ural convection problems in both fluids subjected to a tem-
perature gradient on two opposite walls of the cavity and
the other two being insulated, which is the subject to deal
with in this work. (I) Porous media: Moya et al. [1] solve
the steady problem in tilted horizontal rectangular cavities
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with Rayleigh numbers Rap = 102, finding multiple cellular
flow. Sen et al. [2] from de steady problem also study the
multiplicity of solutions considering vertical and horizontal
inclined cavities, showing analytical and numerical results
for small angles / and Rap 6 500. Baytas [3] shows results
from the unsteady problem in a tilted square cavity for
Rap = 102, 103, 104; Saeid and Pop [4] study the transient
evolution for these Rayleigh numbers in a square cavity,
reporting the final time when the steady state is reached.
In connection with works more concerned with applica-
tions we can mention Bennacer et al. [5], Al-Amiri [6], Slimi
et al. [7], Das and Morsi [8], Slimi et al. [9]. (II) Homoge-

neous fluids: Hamady et al. [10] study from the unsteady
problem the effect of the inclination on the heat transfer
inside an enclosure with square cross section for Rah in
104 < Rah 6 106. Henkes and Hoogendoorn [11] present
results from the steady problem in a square cavity when
Rah is increased in the range 103

6 Rah 6 108. In Bermúdez
and Nicolás [12] flows for Rah in 105

6 Rah 6 108 inside a
square cavity are reported from the unsteady problem in
primitive variables. On the other hand, flow in a differen-
tially heated tall cavity with aspect ratio 8 have been stud-
ied by some authors using an alternative dimensionless set
of equations in the unsteady problem, mainly in primitive
variables. Christon et al. [13] seem to be the first authors
to establish the guide questions about the behavior of the
fluid in this kind of cavities at high Rayleigh numbers
Rah. In this direction, and for the specific value
Rah = 3.4 � 105, the following works can be mentioned:
Xin and Le Quéré [14] investigate the bifurcation points
and the stability of the solutions. Auteri and Parolini [15]
investigate the first instabilities and report a phenomenon
of symmetry breaking, which is restored later, providing
the first steps on transition to chaos. In Glowinski [16],
results are reported at different times, showing that the flow
is time-dependent, that is, the flow does not reach a steady
state.

The results in this work show that either the solution
reaches the steady state of the flow, if it exists, or describes
the evolution of a time-dependent flow when a steady state
is not reached since the flow may be oscillatory. In porous
media some results are validated in tilted rectangular cavi-
ties. Results, supposed to be new, are shown for Rap P 102.
In homogeneous fluids, results are reported for Rah =
3.4 � 105 in a tall cavity without inclination to validate
the numerical method with time-dependent flows, taking
into account that the validation in square cavities until
Rah = 105, reaching a steady state, is given in Báez et al.
[17]. Results, supposed to be also new, are shown in tilted
square cavities for the higher Rah = 106 and in cavities with
height 68 for Rah 6 106. All the results are complemented
with their local and global Nusselt numbers on the hot
wall, and the extreme values of the stream function. The
turbulence phenomenon, which some authors claim occurs
for Rah P 106, is not addressed here since to our knowl-
edge it depends on the kind of non-dimensional equations
used, then even though two non-dimensional situations are
considered in our numerical experiments they are not
pointing in this direction yet.

Summing up, some results are presented as a validation
matter, mainly flows reached at steady state from the
unsteady problem agreeing with the ones other authors
have obtained from the steady problem; others are new,
either extended to a higher Rayleigh number or considering
angles of inclination no reported so far as well as results
with different aspect ratios. To assure that the new flows
are correct, to our knowledged reported for the first time,
a time step and mesh independence studies are made.
Finally, some similarities and differences between porous
media and homogeneous fluids are described.

2. Mathematical models

Natural convection flow of a thermal viscous fluid
assumed to be Newtonian is considered under the Bous-
sinesq approximation in the presence of a gravitational
field. The Boussinesq approximation is based on the
assumptions that the temperature variations are small
enough in order to consider the density q as a constant
except in the buoyancy term qg, where g is the gravitational
force and q, from the state equation, is given linearly by
q = q0[1 � b(T � T0)] where T is the temperature, the
density change due to changes in pressure is neglected,
and q0 and T0 denote reference density and temperature
respectively; fluid properties, such as dynamic viscosity l,
the permeability K, thermal expansion b ¼ � 1

q0
ðoq
oT ÞP , the

thermal diffusivity g, and the specific heat cp are assumed
to be constants; and the dissipation of mechanical energy
is neglected, Gunzburger [18], Landau and Lifshitz [19],
Leal [20]. The first of these assumptions leads us to con-
sider these thermal fluids under an incompressible struc-
ture.

Let X � RN ðN ¼ 2; 3Þ be the region of the flow of an
unsteady, viscous, and thermal fluid; and C its boundary.
Under the Boussinesq approximation this kind of flows
may be governed by the following dimensionless vector sys-
tems, in X and t > 0

(pm):

uþrp ¼ Raphe ð1Þ
r � u ¼ 0 ð2Þ
ht �r2hþ u � rh ¼ 0; ð3Þ

(hf):

ut �r2uþrp þ ðu � rÞu ¼ Rah

PrRe2
he ð4Þ

r � u ¼ 0 ð5Þ

ht �
1

PrRe
r2hþ u � rh ¼ 0 ð6Þ

where (pm) denotes porous media and (hf) homogeneous
fluids; u and p are the dimensionless primitive variables
velocity and pressure, and h the temperature. In porous
media: u ¼ vL0

g , p ¼ K
lg ðP � q0gyÞ, and h ¼ T�T 0

T h�T c
, in homoge-
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neous fluid: u ¼ v
U0

, p ¼ P�q0gy
q0U2

0

, and h ¼ T�T 0

T h�T c
; where L0, T0,

Th, Tc, q0, and U0 are reference quantities of longitude,
temperature, density, and velocity. Eqs. (1) and (2) are
the Darcy equations whereas (4) and (5) the Navier–Stokes
equations, coupled with the temperature Eqs. (3) and (6)
respectively; (2) and (5) are known as the incompressibility

condition, and e is the unitary vector in the direction of g.
The parameter Rap is the Rayleigh number of the porous
medium; Rah, Re, and Pr are the Rayleigh, Reynolds,
and Prandtl numbers of the homogeneous fluid. These

parameters are given by Rap ¼ KbL0gðT h�T cÞ
gm , Rah ¼

bL3
0
gðT h�T cÞ

gm , Re ¼ U0L0

m , and Pr ¼ m
g, where g is the gravitational

acceleration and m(= l
q0
Þ the kinematic viscosity. In homoge-

neous fluids, unlike mixed convection, Iwatsu et al. [21],

there is no reference scale velocity inherent in problems
of natural (or free) convection; then, defining U ¼ m

L0

implies Re = 1, Gunzburger [18, p. 218], Fig. 1 shows the
2D physical models to be considered.

The systems must be supplemented with initial condi-
tions u(x, 0) = u0(x) and h(x, 0) = h0(x) in X; and boundary
conditions, for instance u = f and Bh = 0 on C, t P 0, where
B is a temperature boundary operator that can involve
Dirichlet, Neumann or mixed boundary conditions.

Restricting systems (1)–(3) and (4)–(6) to a two-dimen-
sional region X, applying the curl in both sides of the
momentum equations, and considering that $ � u = 0
implies the existence of a function w, called the stream
function, such that

u1 ¼
ow
oy
; u2 ¼ �

ow
ox

ð7Þ

where (u1,u2) = u; then, the following scalar systems are
obtained, the unitary vector e has been replaced by the angle
of inclination / of the region X through e = (sin/, cos/), in
X, t > 0

(pm):

r2w ¼ Rap

oh
ox

cos /� oh
oy

sin /

� �
ð8Þ

ht �r2hþ u � rh ¼ 0; ð9Þ
X

Y

1

A

g

X

Y

1 1/Ag
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Fig. 1. 2D physical models: (a) porous media and (b) homogeneous fluid.
(hf):

r2w ¼ �x ð10Þ

xt �r2xþ u � rx ¼ Rah

Pr
oh
ox

cos /� oh
oy

sin /

� �
ð11Þ

ht � cr2hþ u � rh ¼ 0 ð12Þ

where the vorticity x is given by x ¼ ou2

ox �
ou1

oy , from
xk = $ � u = �$2wk. It should be noted that c = 1/Pr

and Re = 1 have been replaced. Both systems represent
the Boussinesq approximation in w and x variables of sys-
tems (1)–(3) and (4)–(6).

Denoting with a the width of a bi-dimensional cavity
and with b its height, for homogeneous fluid an alternative
dimensionless system similar to (4)–(6) can be obtained if
L0 = a, U 0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbaDT
p

, and T 0 ¼ T hþT c
2

are considered;
where U0 is a reference velocity depending on the temper-
ature difference DT. Like before, once the rotational is
applied, the corresponding alternative system in stream
function-vorticity variables reads, in X, t > 0

(hf):

r2w ¼ �x ð13Þ

xt �
ffiffiffiffiffiffiffiffi
Pr

Rah

r
r2xþ u � rx ¼ oh

ox
cos /� oh

oy
sin /

� �
ð14Þ

ht �
1ffiffiffiffiffiffiffiffiffiffiffiffi

RahPr
p r2hþ u � rh ¼ 0 ð15Þ

The flow in a cavity where the side-walls are at constant but
with different temperatures is to great extent determined by
the value of Rah. For low values of Rah the dimensionless
system of equations given by (4)–(6), (10)–(12) is appropri-
ated but when this value is rather large the alternative sys-
tem (13)–(15) is more suitable.

The pressure has been eliminated since the curl of the
gradient is zero and the incompressibility condition is satis-
fied automatically, by (7). However, for homogeneous fluids
one has the inconvenience that there is no boundary condi-
tion for x and a procedure must be given to construct it.

This work is concerned with natural convection in rect-
angular cavities, then the equations are set in X = (0, a) �
(0,b); a > 0, b > 0. For viscous fluids u = 0 on solid walls;
in natural convection all the walls of the cavities are solid,
then by (7). w is constant and it can be chosen to be 0. To
construct the boundary condition for x various alternatives
have been proposed, see for instance Dean et al. [22], Peyret
and Taylor [23]. Here the alternative in Nicolás and Bermú-
dez [24], extended to natural convection problems in rectan-
gular cavities, is used: by Taylor expansion of w on the
boundary and using (10), the following Oðh2

xÞ (the first
two) and Oðh2

yÞ (the last two) relations are obtained

xð0; y; tÞ ¼ � 1

2h2
x

½8wðhx; y; tÞ � wð2hx; y; tÞ� ð16aÞ

xða; y; tÞ ¼ � 1

2h2
x

½8wða� hx; y; tÞ � wða� 2hx; y; tÞ� ð16bÞ
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xðx; 0; tÞ ¼ � 1

2h2
y

½8wðx; hy ; tÞ � wðx; 2hy ; tÞ� ð16cÞ

xðx; b; tÞ ¼ � 1

2h2
y

½8wðx; b� hy ; tÞ � wðx; b� 2hy ; tÞ� ð16dÞ

where hx and hy denote the size of the spatial discretization
in X and Y directions.

The local Nusselt number Nu measures the heat transfer
at each point on the wall where the temperature is specified
and the global Nusselt number Nu measures the total rate
of heat transfer on the wall. These non-dimensional param-
eters are defined by

Local Nusselt number:

NuðxÞ ¼ a
b

oh
oy

����
����
����
y¼0;b

or NuðyÞ ¼ b
a

oh
ox

����
����
����
x¼0;a

Global Nusselt number:

Nujy¼0;b ¼
Z a

0

NuðxÞdx or Nujx¼0;a ¼
Z b

0

NuðyÞdy
3. Numerical method

The time derivatives xt, ht in systems (8)–(12), and (13)–
(15) are approximated by

ftðx; ðnþ 1ÞDtÞ � 3f nþ1 � 4f n þ f n�1

2Dt
ð17Þ

where n P 1, x 2 X, Dt > 0 is the time step, f r is an approx-
imation of f(x, rDt). It is known that (17) is a second order
approximation for sufficiently smooth function f.

Once (17) is applied on xt, ht the following systems are
obtained in X, incorporating the boundary condition on C
for w, h, and x as discussed before; the detail for (13)–(15)
is skipped,

(pm):

r2wnþ1 ¼ Rap

ohnþ1

ox
cos /� ohnþ1

oy
sin /

� �
;

wnþ1jC ¼ 0 ð18Þ
ahnþ1 �r2hnþ1 þ unþ1 � rhnþ1 ¼ fh; Bhnþ1jC ¼ 0 ð19Þ

(hf):

r2wnþ1¼�xnþ1; wnþ1jC¼ 0 ð20Þ

axnþ1�r2xnþ1þunþ1 �rxnþ1¼Rah

Pr
ohnþ1

ox
cos/�ohnþ1

oy
sin/

� �
þ fx;

xnþ1jC¼xnþ1
bc ð21Þ

ahnþ1� cr2hnþ1þunþ1 �rhnþ1¼ fh; Bhnþ1jC¼ 0 ð22Þ

where a ¼ 3
2Dt, fw ¼ 4wn�wn�1

2Dt , fh ¼ 4hn�hn�1

2Dt , u in terms of w is
given by (7), xbc denotes the x boundary condition in
(16) and B the h boundary operator.

Renaming (xn+1,hn+1,wn+1) by (x,h,w) to simplify the
notation, we must solve at each time level, for (20)–(22),
a non-linear elliptic system of the form
(hf):

r2w ¼ �x; wjC ¼ 0 ð23Þ

ax�r2xþ u � rx ¼ Rah

Pr
oh
ox

cos /� oh
oy

sin /

� �
þ fx;

xjC ¼ xbc ð24Þ
ah� cr2hþ u � rh ¼ fh; BhjC ¼ 0 ð25Þ

and a similar one for (18) and (19). To obtain (x1,h1,w1) in
(18) and (19) and (20)–(22), a first order approximation is
applied in the temporal derivatives through a subsequence
with a smaller time step to maintain second order precision;
elliptic systems like the one in (23)–(25) are also obtained.

Denoting by

Hðw; hÞ � ðaI � 1r2Þhþ u � rh� fh

where B is 1 for (19) and c for (22) (or (25)), and by

W ðw; h;xÞ � ax�r2xþ u � rx

� Rah

Pr
oh
ox

cos /� oh
oy

sin /

� �
� fx

then, system (23)–(25) and the analogous for (18) and (19)
are equivalent to

(pm):

r2w ¼ Rap

oh
ox

cos /� oh
oy

sin /

� �
; wjC ¼ 0 ð26Þ

Hðw; hÞ ¼ 0; BhjC ¼ 0 ð27Þ

(hf):

r2w ¼ �w; wjC ¼ 0 ð28Þ
W ðw; h;xÞ ¼ 0; xjC ¼ xbc ð29Þ
Hðw; hÞ ¼ 0; BhjC ¼ 0 ð30Þ

These systems are solved with the following fixed point
iterative process

(hf):
Given (h0,x0) = (hn,xn), with k > 0, solve until conver-

gence on h and x

r2wmþ1¼�xm; wmþ1jC¼ 0 ð31Þ
hmþ1¼ hm�kðaI� cr2Þ�1Hðwmþ1;hmÞ; Bhmþ1jC¼ 0 ð32Þ
xmþ1¼xm�kðaI�r2Þ�1W ðwmþ1;hmþ1;xmÞ;
xmþ1jC¼xm

bc ð33Þ

and take

ðwnþ1; hnþ1;xnþ1Þ ¼ ðwmþ1; hmþ1;xmþ1Þ
for (28)–(30), and one similar for (26) and (27):

‘‘Given h0 = hn solve until convergence on h . . . , and
take (wn+1,hn+1) = (wm+1,hm+1)”.

The partial differential equation problem for hm+1 in
both systems is equivalent to

ðaI �r2Þhmþ1 ¼ ðaI � 1r2Þhm � kHðwmþ1; hmÞ;
Bhmþ1jC ¼ 0
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and the one for xm+1 in (33) to

ðaI �r2Þxmþ1 ¼ ðaI �r2Þxm � kW ðwmþ1; hmþ1;xmÞ;
xmþ1jC ¼ xm

bc

Therefore, at each iteration of each time level, uncoupled
symmetric elliptic linear problems associated with the oper-
ators $2, aI � B$2, and aI � $2 must be solved. For homo-
geneous fluids the iterative process is extended until the
boundary to be able to construct the boundary condition
for x in (16) given implicitly in terms of w in X.

For the elliptic problems above very efficient solvers
exist regardless of the space discretization. The results of
this work are obtained with the second order approxima-
tion of the Fishpack solver [25], where the algebraic linear
systems are solved with an efficient cyclic reduction itera-
tive method [26]. As already mentioned, the first time deriv-
atives are approximated with the second order one in (17)
whereas the first space derivatives of w in (7) to obtain u in
(8)–(12) and (13)–(15), the normal derivative of the bound-
ary condition for h, described later on, and the first space
derivatives for the local Nusselt number are approximated
by the centered second order finite difference approxima-
tion in interior points and by (17) in boundary points; to
approximate the integral in the global Nusselt number
the second order trapezoid rule (in the entire interval) is
used. These second order approximations, complemented
with the second order one of the boundary condition for
x in (16) for the elliptic problems, imply that the whole
problem relies on second-order approximations.
Table 1
Results with Rap = 102 and Dt = 2 � 10�3

D hx � hy / wmax Nu Number of cells Tss

3 1/60 � 1/40 10� 2.0409 2.8663 3 0.212
25� 2.3956 2.2494 1 + sec. 0.168
40� 2.8887 2.5491 1 0.338

10 1/100 � 1/20 10� 0.5860 2.7302 13 0.724
40� 0.8480 1.5218 1 + sec. 0.472
55� 1.0237 1.6240 1 0.452
4. Results and discussion

The initial condition for temperature and vorticity are
given by h(x, 0) = 0 and x(x, 0) = 0. The parameter k in
the iterative process is chosen as k = 0.7 and the stopping
absolute criterion for the iterative process as 10�5. For
porous media the Rayleigh number considered lies in the
range 60 6 Rap 6 104 while for homogeneous fluids lies
in 104

6 Rah 6 106 and Pr = 0.71 which means that the
cavity is filled with air. The results are reported through
the streamlines of the stream function and the isotherms
of the temperature; the iso-contours values, unless the con-
trary should be stated, are default ones. The aspect ratio A,
the angle /, the boundary condition for temperature (con-
tained so far in the operator B) and the discretization
parameters, time step Dt and the size of the mesh hx � hy,
will be specified in each case under study.

Unless the contrary should be indicated, the results
shown correspond to steady state flows from the unsteady
problem. They are the converged asymptotic steady state as
time t approaches +1 (large time, in practice). To reach
convergence to an asymptotic steady state a stopping crite-
rion must be given for the final time Tss when it occurs.
Since Tss is the time when the solution does not change
any more with respect to time at any spatial point occupied
by the fluid, Nicolás and Bermúdez [27], Tss is determined
with the point-wise discrete L1 absolute criterion in the
closure X of the cavity

x : kxnþ1
hx;hy � xn

hx;hyk1
h : khnþ1

hx;hy � hn
hx;hyk1

Firstly, numerical experiments are reported to validate the
numerical scheme with well-known results supposed to be
correct. Secondly, new results are presented which to sup-
port they are correct a time step and mesh independence
studies with the point-wise discrete L1 relative error in X

Dt fixed:
kfhx1;hy1;Dt � fhx2;hy2;Dtk1

kfhx1;hy1;Dtk1

fhx; hyg fixed :
kfhx;hy;Dt1 � fhx;hy;Dt2k1

kfhx;hy;Dt1k1
are made. All the results are complemented with their local
Nu and global Nu Nusselt numbers and the extreme values
of the stream function w.

4.1. Porous media

4.1.1. Tilted horizontal cavities

The boundary condition for the temperature is given by

oh
on
jx¼0;1 ¼ 0; hjy¼0 ¼ 1; hjy¼1 ¼ 0

Lateral walls are adiabatic and horizontal walls with spec-
ified constant temperature, then heating occurs on the low-
er wall. It should be noted that the problem is re-scaled in
order to x and y vary from 0 < x, y < 1 then for a given as-
pect ratio A the one considered here is D ¼ 1=A ¼ a

b, which
must appear explicitly in the respective equations. Various
values of the Rayleigh number Rap, hx, hy, Dt, D and
the angle / with 0� 6 / 6 180� are considered. Single or
multiple cells appear depending on the value of these
parameters.

Results for Rap = 102 with some aspect ratios and angles
are shown on Table 1. The maximum value of the stream
function wmax increases with the angle but the global
Nusselt number Nu oscillates. Further experiments, not
reported here, for Rap P 60, D > 1 fixed, and angles
0 6 / 6 180, indicate, like in Moya et al. [1], that Nu, as
function of the angle, has two local maxima: one when
multiple cells appear and the other when a single cell is
obtained.
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Fig. 2. Rap = 102, D = 3, Dt = 2 � 10�3 and hx � hy ¼ 1
60
� 1

40
.

Table 2
Angles of transition for Rap = 102 and various aspect ratios

D /s (transition)

2 11�
3 24�
4 29�
8 32�

10 30�
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Fig. 2 shows streamlines, isotherms and local Nusselt
number on the bottom wall, for Rap = 102, D = 3, and
three angles. When / = 40� the streamlines show that the
hot fluid on the bottom rises near the right wall until the
top cold wall and turns to fall on the left side forming a
counterclockwise rotating cell; on the other hand, different
isotherms lie closer each other in the left corner than in
other part on the hot wall, which indicates more vertical
variation of the temperature and therefore the local Nusselt
number on the bottom hot wall has only one maximum
near the left corner and one minimum in the right one.
When the angle diminishes to / = 25�, secondary cells
appear. When / = 10� three cells rotating in opposite
directions each other are obtained; different isothermals
on the bottom wall are close each other in the left corner
but near the center also, that is, in the limit between cells
where the fluid comes from the cold to the hot wall, hence
there are two places on the bottom where exist more heat
transfer, and then, the local Nusselt number has two max-
ima and two minima.

Something similar occurs with D = 10 but the number
of convective cells for small angles is 13 which shows that
heat transfer has been increased in more places than for
D = 3 implying that the local Nusselt number has now
seven maxima and equal number of minima. However,
from Table 1 it is observed that the global Nusselt number
Nu decreases when the aspect ratio increases, regardless of
the angle. Results with D = 3 are in agreement with those
reported by Moya et al. [1] but for D = 10 they report only
nine cells and hence less than seven maxima and seven min-
ima for the local Nusselt number while in this work various
meshes and time step sizes showed that different quantity of
cells can be obtained depending on the size of the mesh:
nine cells with a square mesh 1

30
� 1

30
until 15 with a finer

horizontal mesh 1
400
� 1

40
.

Denoting by /s the transition angle, with 0� 6 / < /s, to
pass from multiple cells to a single cell, analysis for
Rap = 102 with various mesh sizes, time steps, and other
aspect ratios was made to figure it out /s, Table 2. It is
observed that with D = 4, D = 8, and D = 10 the angles
differ among them by little while with D = 3, and mainly
with D = 2, there is a noticeable difference. These angles
are the same of those in Moya et al. [1] except for aspect
ratios 2 and 3 where the discrepancies are of 1� only.

Going further than in Moya et al. [1], experiments for
the higher Rayleigh number Rap = 103 with the same
aspect ratios are studied, to the best of our knowledge this
is the first time they are reported. To validate these new
flows with D = 3, computations were made for three mesh
sizes and three time steps, considering / = 0�:

(1) time step fixed Dt = 10�5 and (hx,hy) = (1/150,1/50),
(1/225, 1/75), (1/300, 1/100);

(2) mesh size fixed (hx,hy) = (1/225, 1/75) and Dt = 10�5,

5 � 10�6, 2.5 � 10�6.

The discrepancies for each set of computations are:

(1) at most 4.4% (4.4% for stream function and 1.5% for
temperature);

(2) at most 1.1% (1.1% for stream function and less than
0.3% for temperature).

The correspondent max/min values of stream function w
in each case are:

(1) max/min = 11.6464/�16.9201, 11.7949/�16.6909,
11.8455/�16.6041, respectively;

(2) max/min = 11.7949/�16.6909, 11.8391/�16.6627,
11.9054/�16.6190, respectively.

Therefore, due to the above discrepancies and since
there are no changes with finer meshes, the result shown
in Fig. 3 is taken as the correct one.

It is observed in Fig. 3 that qualitatively for Rap = 103

occurs something similar for Rap = 102: multiple cells
are obtained in the streamlines for the smallest angle
/ = 10�; with / = 25� one main cell and two secondary
cells appear; for / = 40� only one main cell appears as in
Rap = 102. However, some differences can be observed;
the isotherms and the cells of the streamlines appear dis-
torted with small angles and more than three convective
cells are obtained with / = 10�, and with / = 25� the sec-
ondary cells are larger and each one fills almost half of
the cavity, the respective local Nusselt numbers show that
although the majority of the heat transfer occurs in the left
corner, when / = 10� there exists other maximum near the
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Fig. 3. Rap = 103, D = 3, Dt = 10�5 and hx � hy ¼ 1
225
� 1

75
.
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right corner and this seems a consequence that the small
cell near the right wall picks heat from the hot to the cold
wall.

Table 3 shows some results with D = 3 and D = 10 with
suitable meshes. It is noticed that wmax and Nu have
increased with respect to Rap = 102, see Table 1, which
indicate stronger motion and in consequence higher heat
transfer; however for Rap = 103 fixed those values dimin-
ished if the aspect ratio D increases and both show to be
functions of the angle /. For D = 3, the angle of transition
/s = 24� equals the one for Rap = 102 but for D = 10 the
angle /s = 27� is smaller than the one for Rap = 102.

For Rap = 102 with several aspect ratios and angles,
Table 4 shows a comparison of some values of the heat
Table 3
Results with Rap = 103 and Dt = 10�5

D hx � hy / wmax Nu Number of cells Tss

3 1/225 � 1/75 10� 16.8320 8.7687 5 0.00931
25� 17.5419 8.0889 1 + sec. 0.01011
40� 16.4969 9.9158 1 0.01312

10 1/500 � 1/50 10� 3.9961 3.6459 5 + sec 0.00956
40� 7.0677 4.5745 1 + sec. 0.03087
55� 7.4627 5.2531 1 0.03007

Table 4
Global Nusselt number for Rap = 102 and Dt = 2 � 10�3

D / Nu (C) Number
of cells (C)

Nu (B) Number
of cells (B)

Difference
in Nu (%)

2 0� 2.65 3 2.70 3 2
10� 2.60 3 2.38 1 + sec. 9
15� 2.44 1 2.57 1 5

4 0� 2.67 5 2.75 5 3
30� 2.57 1 2.37 1 + sec. 8
40� 2.02 1 2.20 1 9

8 0� 2.64 11 2.70 11 2
30� 2.45 4 2.25 1 + sec. 9
40� 1.52 – 1.65 1 9
transfer, through the global Nusselt number Nu, and the
number of cells obtained in this work, values indicated
by (B), with those in Caltagirone and Bories [28], values
indicated by (C). It is observed that the difference between
the respective values of Nu is less than 9% in all cases but
the number of cells can be different.

4.1.2. Tilted square and vertical cavities

In this case the temperature boundary condition is given
by

oh
oy

����
y¼0;b

¼ 0; h ¼ 0:5; jx¼0; h ¼ �0:5jx¼1

Now horizontal walls are adiabatic and lateral ones with
specified constant temperature, heating occurs on the left
wall. It should be noted that this case is equivalent to the
previous one, considering now that the vertical walls have
specified temperature and the cavity is rotated 90�. Similar
results are obtained as those in 4.1.1 for square and hori-
zontal cavities for Rap = 102 since the configurations are
the same: lateral walls become to be adiabatic and the bot-
tom and top ones become with specified temperature, hot
and cold respectively. Despite the temperature on these
parts of the boundary is not the same as in the earlier case,
the difference Dh = 1, which must be reflected in the results.

Results obtained for Rap = 102, 103, 104 and various
angles showed to be in agreement with those in Baytas
[3], from the unsteady problem. Fig. 4 shows streamlines
and isotherms for Rap = 104 with some angles. With these
angles one main cell appears in the streamlines and the
central part of them and the one of the isotherms is
extended toward the lateral walls with specified constant
0.2 0.4 0.6 0.8 1

50

100

150

200

250

Streamlines Isotherms

0o 40o

130o 330o

Local Nusselt number

130o

40o

330o

0o

Streamlines Isotherms

Fig. 4. Rap = 104, A = 1, hx � hy = 1/300 � 1/300 and Dt = 2 � 10�7.
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Fig. 5. Rap = 103, A = 3, Dt = 10�5 and hx � hy = 1/75 � 3/225.
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temperature; streamlines and isotherms tend to adhere into
those walls also. Stretched secondary cells appear for / =
330�. The local Nusselt number on the hot lateral wall
shows that the highest heat transfer occurs in the lower cor-
ner for angles of 0�, 40�, and 330� but when the angle is
130� such value occurs in the upper corner because of the
opposite effect of the buoyancy force since with the angle
130� the hot wall will have an angle of 40� with respect
to the horizontal, and as it had been mentioned in 4.1.1,
the fluid tends to rise from the hot to the cold wall counter-
clockwise.

For Rap = 104, Table 5 summarizes the global Nusselt
number, extreme values of stream function wm, maximum
in positive values or minimum in negative values, and the
final time Tss to reach the steady state. When / = 40� there
is noticeable faster clockwise motion of the fluid, as wm

indicates, which forces a considerable increase of the heat
transfer Nu.

As Rap increases a noticeable diminution on the mesh
size and time step Dt is required. For instance, for
Rap = 103 a mesh of 1/70 � 1/70 and Dt = 2 � 10�5 is
enough but for Rap = 104 a mesh 1/300 � 1/300 and
Dt = 2 � 10�7 are required.

This time going further than Baytas [3] new results are
reported for Rap = 102, 103 on vertical cavities, A P 1,
with angles 0� 6 / 6 360�. Single and multiple convective
cells are found.

Results with A = 3 and Rap = 103 considering / = 0�
were validated with:

(1) time step fixed Dt = 10�5 and (hx,hy) = (1/50, 3/150),
(1/75,3/225), (1/100,3/300);

(2) mesh size fixed (hx,hy) = (1/75, 3/225) and Dt = 10�5,

5 � 10�6, 2.5 � 10�6.

The respective discrepancies were:

(1) at most 2.7% (2.4% for stream function and 2.7% for
temperature);

(2) less than 1 � 10�4% (less than 7.7 � 10�5% for
stream function and 9.9 � 10�5% for temperature).

The maximum for stream function was zero in all cases
and the correspondent minimum in each case is

(1) min = �37.4366, �38.1144, �38.3791 respectively;
(2) min = �38.1144, �38.1152, �38.1164 respectively.
Table 5
Results for Rap = 104 with A = 1, Dt = 2 � 10�7 and hx � hy = 1/300 �
1/300

/ wm Nu Tss

0� �69.2383 59.5447 0.015575
40� �96.7505 150.3877 0.0009918

130� 87.1717 53.4990 0.0189956
330� �36.6366 33.7527 0.0283764
Then, due to the above discrepancies and that there are
not noticeable changes with finer meshes, the results taken
as correct are shown in Fig. 5.

Although in Fig. 5 for Rap = 103, the streamlines have only
one cell for the same angles considered in Fig. 4, it was
observed that for angles / nearest to 90� there appear multiple
convective cells (nine cells are obtained with / = 0�). More-
over, the results with / = 130� in Fig. 5 are equivalent to
those in Fig. 3 for / = 40�, as it was early mentioned; the
distortion observed in Fig. 5 is a consequence of the aspect
ratio, this congruence can be seen as an additional valida-
tion. In similar way the Nusselt number shows that when
one cell appears the greatest heat transfer is reached at the
bottom while the lowest at the top with angles 0�, 40�, and
330� with opposite situation for 130� because of the reverse
effect of the buoyancy. Table 6 shows the extremum values
Table 6
Results for Rap = 103 with A = 3, Dt = 10�5 and hx � hy = 1/75 � 3/225

/ wm Nu Tss

0� �38.1144 10.5268 0.02349
40� �39.6460 10.5991 0.01996

130� 44.6996 9.9944 0.01530
330� �30.5517 8.4037 0.11395



Table 7
Results for Rah = 105 and Rah = 106, with A = 1, Dt = 10�4, hx � hy =
1/30 � 1/30

Rah / wm Nu Tss

105 0� �13.4661 4.7504 0.2175
40� �24.6617 4.7386 0.2426

130� 28.7379 4.6638 0.2843
330� �7.2228 3.1358 0.2386

106 0� �23.8098 11.3083 0.1806
40� �41.8493 10.4157 0.2961

130� 47.3883 9.9411 0.7188
330� �12.6913 6.5755 0.1977
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of the stream function wm, and the global Nusselt number,
the steady state times Tss; with those angles a stronger coun-
terclockwise motion is obtained with 130�, and the heat
transfer is highest with 40�.

4.2. Homogeneous fluid

In Section 4.2.1 that follows computations are based on
system (10)–(12) whereas those in Section 4.2.2, on system
(13)–(15).

4.2.1. Tilted square cavity

Boundary condition for temperature, like in Section
4.1.2:

oh
oy
jy¼0;1 ¼ 0; h ¼ 0:5jx¼0; h ¼ �0:5jx¼1:

Computations were made on a mesh hx � hy = 1/30 � 1/30
and Dt = 10�4 independently of the Rayleigh number Rah.
Results for Rah 6 103 show isothermals almost parallels to
the lateral walls, one cell for the streamlines is obtained,
and there exist small differences with the values of Nu
and those of the extremum values of w regardless of the an-
gle. For Rah P 104 changes in isothermals appear, they are
not longer parallels, but one central cell is also obtained in
streamlines.

Results for Rah = 105 and some angles are shown in
Fig. 6. It is observed that the fluid motion is stronger.
One main convective cell with secondary cells is obtained
with some angles. With angles of 0�, 40�, and 330� the main
cell rotates clockwise whereas with 130� rotates counter-
clockwise. On the hot wall the maximum of the local Nus-
selt number occurs near the lower corner with angles 0�,
Streamlines Isotherms Streamlines Isotherms

40o
0o

130o
330o

40
o

0o

130
o

330
o

Fig. 6. Rah = 105, A = 1, Dt = 10�4 and hx � hy = 1/30 � 1/30.
40�, and 330�, and near the upper one with 130�; the curve
decreases softly from the upper corner and reverse situa-
tion occurs with 130�.

In Table 7, results of the global Nusselt numbers, extre-
mum values of the stream function, and the final times Tss

to reach steady state are shown for Rah = 105 and
Rah = 106. It is observed that the fluid motion is stronger
when Rah increases, as indicated by the extremum values
of the stream function. Moreover, for both values of Rah

the flow is faster when the angle is 130�, and more heat
transfer is obtained in both cases when the angle decreases.

To validate the flow for Rah = 106 with our numerical
method, computations were made with three mesh sizes
and three different time steps, considering / = 0�:

(1) time step fixed, Dt = 10�4 and (hx,hy) = (1/30,1/30),
(1/45, 1/45), (1/60, 1/60);

(2) mesh size fixed (hx,hy) = (1/30, 1/30) and Dt = 10�4,
5 � 10�5, 2.5 � 10�5.

The discrepancies for each set of computations are:

(1) at most 7.7% (7.7% for vorticity, 2.2% for stream
function and 5.4% for temperature);

(2) less than 1% (0.14% for vorticity, 0.13% for stream
function and 0.08% for temperature).

The correspondent minimum values of stream function
w in each case (the maximum value is always zero) are:

(1) min = �23.8070, �23.6150, �23.6034, respectively;
(2) min = �23.8070, �23.8043, �23.7993, respectively.

Due to the above discrepancies and because no change is
observed in results with finer meshes, the flow in Fig. 7 is
taken as the correct one. A more complex flow is observed.
Two and three secondary cells may appear for some angles.
Analogously as in porous media for Rah = 104, the central
part of the streamlines is expanded and tends to adhere
into the walls with specified temperature; for others angles
it is extended toward all the walls. The corresponding local
Nusselt number on the hot wall, shows a rapid descent
close to the left lower corner. As observed, qualitatively
the situation with / = 130� is the opposite.
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Fig. 7. Rah = 106, A = 1, Dt = 10�4 and hx � hy = 1/30 � 1/30.

Table 8
Values of the global Nusselt and the maximum of the horizontal and
vertical velocities for / = 0� and Dt = 10�4

Rah u1max
(M) u2max

(M) Nu (M) u1max
(B) u2max

(B) Nu (B)

103 3.54 3.59 1.108 5.081 5.140 1.117
104 16.18 19.44 2.201 22.513 27.017 2.257
105 42.51 69.08 4.430 58.773 91.990 4.750
106 117.8 226.7 8.754 172.644 295.914 9.245
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Fig. 8. Rah = 3.4 � 105, A = 8, Dt = 10�2 and hx � hy = 1/30 � 8/240.
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Fig. 9. Rah = 106, A = 8, Dt = 10�2 and hx � hy = 1/30 � 8/240.

4782 E. Báez, A. Nicolás / International Journal of Heat and Mass Transfer 49 (2006) 4773–4785
Results for Rah = 105, 106 with angle / = 0� are in
agreement with those obtained by Bermúdez and Nicolás
[12] and the ones for the inclined cavity for Rah = 106, with
appropriated angles, agree with those obtained by Kuyper
et al. [29] considering a square cavity heated from below.

For the global Nusselt number Nu on the hot wall and
the maximum of the horizontal and vertical velocities
u1max and u2max in all the cavity, Table 8 shows a comparison
of the results obtained in this work, indicated by (B), with
those obtained by Markatos and Pericleous [30], indicated
by (M), from the steady problem. Important differences are
noticed, mainly for values of the velocities; however, the
results presented by Markatos an Pericleous were obtained
without consider the Boussinesq approximation and they
comment that some results of the Nusselt number with
the Boussinesq approximation show differences up to
3.7% for Rah = 105 and 106.

4.2.2. Tall vertical cavity

Boundary conditions for temperature:

oh
oy
jy¼0;b ¼ 0; h ¼ 0:5jx¼0; h ¼ �0:5jx¼1:

Cavities without and with inclination are considered.
4.2.2.1. Untilted cavity. Computational experiments in a
vertical cavity without inclination and aspect ratio 8 were
made for Rah = 3.4 � 105 and 106. Results for the first
value of Rah is reported in Glowinski [16] at some final
times T’s and our results agree with those. A mesh
hx � hy = 1/30 � 8/240 and time step Dt = 10�2 are used
in all the experiments.

For both cases, more computations for larger times were
made and they indicate that the flow is oscillatory, that is,
it does not reach a steady state. Results at three different
final times T are shown in Fig. 8 for Rah = 3.4 � 105 and
in Fig. 9 for Rah = 106. A large main cell with secondary
cells, which appear larger for Rah = 106, is observed in
the streamlines for both Rah. The respective local Nusselt
number, at the three times, shows larger values for
Rah = 106.

In Table 9, the global Nusselt number Nu shows also
larger values for Rah = 106 although the magnitude of wmin

indicates that the fluid motion is stronger for Rah =
3.4 � 105 than Rah = 106 at T = 150 and T = 500. With
Rah fixed, the global Nusselt number increases as the mag-
nitude of wmin grows.



Table 9
Results for Rah = 3.4 � 105 and Rah = 106 with A = 8, Dt = 10�2 and
hx � hy = 1/30 � 8/240 (untilted case)

Rah wmin Nu T

3.4 � 105 �0.1498 4.8471 50
�0.1289 4.8354 150
�0.1285 4.8352 500

106 �0.1737 6.6580 50
�0.1097 6.5888 150
�0.1207 6.6408 500

Table 10
Results for Rah = 3.4 � 105 and T = 50 with A = 8, Dt = 10�2 and
hx � hy = 1/30 � 8/240 (tilted case)

/ wm Nu

0� �0.1498 4.8471
40� �0.1725 4.8046

130� 0.1745 4.6573
330� �0.1325 4.3867
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4.2.2.2. Tilted cavity. To observe the rotation effect of the
vertical cavity on the fluid motion and on the heat transfer
at fixed time, results with angles 40�, 130� and 330� are pre-
sented for Rah = 3.4 � 105 and T = 50 in Fig. 10. The
results with 0� can be seen in previous Fig. 8. To the best
of our knowledge, these results are reported for the first
time.

Table 10 summarizes the extremum values of the stream
function and the global Nusselt number. It can be seen that
the inclination of the cavity generates stronger fluid motion
with certain angles, 40� and 130�, counterclockwise or
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Fig. 10. Rah = 3.4 � 105, A = 8, Dt = 10�2, T = 50 and hx � hy =
1/30 � 8/240.
clockwise, but the heat transfer Nu is higher without incli-
nation, with the other angles it differs very little.

Finally, some similarities and discrepancies observed
between porous media and homogeneous fluid are
indicated.

Similarities :

(a) In both kind of fluid flow the fluid motion and the
heat transfer are stronger in square cavities than in
rectangular ones if the respective Rayleigh number
is fixed,

(b) a more vigorous fluid motion is obtained when Rap or
Rah increases implying higher heat transfer; however,
this behavior may depend on the aspect ratio and on
the angle of inclination,

(c) in square cavities, for Rap P 103 in porous media and
Rah P 105 in homogeneous fluids one main cell
appears but for some angles secondary cells appear
and the isotherms and streamlines tend to adhere into
the walls with specified temperature.

Discrepancies :

(a) The mesh size and the time step must be finer for por-
ous media than for homogeneous fluids when Rap or
Rah increases,

(b) in rectangular porous cavities with Rap P 102 there
appears from one to multiple cells for some angles
whereas in homogeneous fluids for Rah of the order
of 105 and 106 in square and large enough vertical
cavities one cell appears only, and at most secondary
cells appear for some angles.
5. Conclusions

Results for porous media and homogeneous fluid, with a
common structure in the numerical procedure, have been
reported with a variety of situations on the Rayleigh num-
ber, aspect ratio and angle of inclination. The change of
these parameters in porous media causes the necessity to
use finer meshes and smaller time steps than in homoge-
neous fluid. For homogeneous fluid, at least with the
stream function-vorticity variables, the situation is more
relaxed because it is possible to obtain good results without
refining too much the mesh size and the time step. The
results strongly indicate that additional studies can be con-
tinued with the numerical procedure, specially those with
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A > 1 for homogeneous fluid, in order to determine the
kind of oscillatory flows for large times when they do not
arrive toward a steady state, that is, to determine if the flow
is periodic, quasi-periodic, or it involves a more compli-
cated bifurcation structure. A study either on transient
flows, like in Saeid and Pop [4] in porous media, or time-
dependent plumes, Bastiaans et al. [31], extended to tilted
rectangular cavities can be explored for homogeneous flu-
ids. Moreover, in porous media, with some modifications
of this numerical procedure, the case with variable poros-
ity, Marcondes et al. [32], and variable anisotropy, Nguyen
et al. [33], can be also explored as well as viscous effects
near walls through the Brinkman extension, Rees [34].
About some specific findings in porous media: one rotating
cell of the streamlines is always obtained for Rap 6 102,
D = 1, and 0� 6 / 6 180�; for Rap 6 102 and D P 2 single
or multiple cells are obtained depending on the angle /.
For 60 < Rap 6 102 and D > 1 the results show multiple
cells, then the stream function has several extreme values
for 0� 6 / < /s, with /s the angle where the transition to
a single cell occurs implying that the stream function has
one maximum only. Above /s a single cell always is
obtained but if the angle / is smaller than /s the unique
maximum of the stream function starts to split into two
parts. This means that although the whole body of fluid
rotates in certain direction, small parts of fluid are isolated
inside the main cell, and they rotate in the same direction of
this main cell, around the extreme value, originating sec-
ondary cells. If / reduces more, multiple cells appear and
they rotate in opposite directions each other and therefore
several extremum values for w are obtained.
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